2001.09~2005.07,清华大学,生物科学与技术系,本科
2005.08~2010.01,美国明尼苏达大学,药理系,博士
2010.01~2010.09,美国明尼苏达大学,药理系,博士后研究助理
2010.09~至今,中国科学院广州生物医药与健康研究院,研究员
郑辉研究员长期致力于研究不同细胞命运转换过程涉及的细胞生物学机制。2010年回国后主要研究多能性转录因子以及细胞在不同状态(间质及上皮)间的相互转化调控体细胞重编程、细胞转分化以及肿瘤发生和发展过程的具体机制,涉及细胞生物学、神经生物学、表观遗传学、肿瘤以及药理学。
郑辉研究员及其团队在早期研究中揭示了EMT/MET对体细胞重编程的重要调控作用(Nat Cell Biol,2013),并提出了“EMT-MET调控细胞命运”的重要理论(Cell Res,2014;Protein & Cell,2014),受到领域内的广泛认可。2017年,利用该理论成功指导成纤维细胞向神经细胞转分化的研究(Cell Discovery, 2017)。此后,围绕EMT对多能性和神经谱系细胞命运的调控作用,从细胞能量代谢和DNA甲基化两个角度开展研究。一方面,揭示了细胞能量代谢与EMT之间的正反馈调控对多能性重建的时间依赖性调控机制,建立了获得新型多能干细胞的技术体系(EMBO J,2020,封面)。另一方面,揭示了DNA甲基化与EMT之间的负反馈调控机制,建立了通过影响DNA甲基化调控细胞命运的新技术体系(Cell Reports,2020;Cell Discovery, 2019;JBC, 2018)。在多能性重建和神经细胞转分化的过程中,将EMT、细胞能量代谢以及DNA甲基化有机地整合了起来。目前,郑辉研究员及其团队正尝试在更多细胞命运转换过程中整合细胞更多类型的变化,绘制细胞命运的普适性调控模型。
郑辉研究员曾作为负责人承担过或正在承担包括国家自然科学基金(创新研究群体-核心成员、重大科学研究计划-集成项目、广东省-NSFC联合基金-重点项目、优秀青年科学项目、面上项目、青年项目等)以及中国科学院先导科技专项(子课题负责人)在内的多项国家以及省市级科研项目。郑辉研究员目前合计发表52篇论文,作为通讯作者或者共同通讯作者发表论文36篇(Nat Cell Biol, EMBO J, PNAS, Cell Reports, Biol Psychiatry, Neuropsychopharmacol, J Neurosci等),作为第一作者发表论文1篇(除去同时是通讯作者的论文),作为共同作者发表论文15篇。合计影响因子超过300,合计引用次数超过1500次,合计他引次数超过1200次。郑辉研究员获得2017年中国科学院杰出科技成就奖-重要成员(7/17),2018年国家自然科学奖二等奖(4/5),2018年广东省自然科学奖二等奖(1/10)。
郑辉博士现担任IUBMB Life, Frontiers in Cellular Endocrinology等国际性学术杂志的编委。同时曾担任国际干细胞研究学会(ISSCR)2014年年会摘要评审、国家自然科学基金项目评审、香港研究资助局(RGC)项目外部评审、科技部创新人才推进计划评审。
指导硕士研究生12名,博士研究生8名。其中,2名毕业生已晋升副研究员。2019年毕业博士研究生(孙昊):在学期间获得中国科学院杰出科技成就奖(14/17);毕业时获得“优秀毕业生”、“地奥二等奖学金”;毕业后已晋升副研究员,获得国家自然科学基金青年项目支持。2018年毕业博士研究生(梁丽宁):留院后先后成为特别研究助理和副研究员,获得中科院特别研究助理项目和国家自然科学基金青年项目支持。培养的研究生(在学期间)作为第一或者通讯作者合计发表25篇论文(Nat Cell Biol, EMBO J, Biol Psychiatry,Cell Reports等),合计影响因子超过200,合计引用次数超1000次;培养的研究生(在学期间)获得广东省自然科学奖二等奖3人次(排名前五)。
*代表通讯作者
第一作者或者通讯作者论文
[37] Liang L#, He M#, Zhang Y#, Wang C, Qin Z, Li Q, Yang T, Meng F, Zhou Y, Ge H, Song W, Chen S, Dong L, Ren Q, Li C, Guo L, Sun H, Zhang W, Pei D*, Zheng H* Unraveling the 2,3–diketo–L–gulonic acid–dependent and –independent impacts of L–ascorbic acid on somatic cell reprogramming. Cell & Bioscience. 2023 Nov 30;13(1):218.
[36] Li C*#, He J#, Meng F#, Wang F#, Sun H, Zhang H, Zhang M, Xu Q, Liang L, Li Y, Yang T, He M, Wang T, Lin J, Sun J, Huang Q, Guo L, Zhang X, Mai S*, Zheng H*. Nuclear Localization of TET2 Requires β-catenin Activation and Correlates with Favourable Prognosis in Colorectal Cancer. Cell Death & Disease. 2023 Aug 24;14(8):552.
[35] Li Y#, Yang T#, Cheng Y#, Hou J#, Liu Z, Zhao Y, Chen S, Qin Z, Wang C, Song W, Ge H, Li C, Liang L, Guo L, Sun H, Wu LP*, Zheng H*. Low glutaminase and glycolysis correlate with a high transdifferentiation efficiency in mouse cortex. Cell Proliferation. 2023 May;56(5):e13422.
[34] Sun J#*, Yang J, Miao X, Loh HH, Pei D, Zheng H*. Proteins in DNA methylation and their role in neural stem cell proliferation and differentiation. Cell Regeneration. 2021 Mar 2;10(1):7.
[33] Meng F#, Li Y, Sun H, Li C, Li Q, Law PY, Loh HH, Liang L*, Zheng H*. Naloxone Facilitates Contextual Learning and Memory in a Receptor-Independent and Tet1-Dependent Manner. Cellular and Molecular Neurobiology. 2021 Jul;41(5):1031-1038.
[32] Zhang M#, Li Q, Yang T, Meng F, Lai X, Liang L, Li C, Sun H, Sun J, Zheng H*. Positive feedback between retinoic acid and 2-phospho-L-ascorbic acid trisodium salt during somatic cell reprogramming. Cell Regeneration. 2020 Oct 1;9(1):17.
[31] Lai X#, Li Q#, Wu F, Lin J, Chen J*, Zheng H*, Guo L*. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Frontiers in Cell and Developmental Biology. 2020 Aug 6;8:760.
[30] Chen J#, Liang L#, Li Y, Zhang Y, Zhang M, Yang T, Meng F, Lai X, Li C, He J, He M, Xu Q, Li Q, Law PY, Loh HH, Pei D, Sun H*, Zheng H*. Naloxone regulates the differentiation of neural stem cells via a receptor-independent pathway. The FASEB Journal. 2020 Apr;34(4):5917-5930.
[29] Liang L#, Chen J#, Li Y, Lai X, Sun H, Li C, Zhang M, Yang T, Meng F, Law PY, Loh HH, Zheng H*. Morphine and Naloxone Facilitate Neural Stem Cells Proliferation via a TET1-Dependent and Receptor-Independent Pathway. Cell Reports. 2020 Mar 17;30(11):3625-3631.
[28] Sun H#, Yang X#, Liang L#, Zhang M#, Li Y, Chen J, Wang F, Yang T, Meng F, Lai X, Li C, He J, He M, Xu Q, Li Q, Lin L, Pei D*, Zheng H*. Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency. The EMBO Journal. 2020 Apr 15;39(8):e102961.
[27] He S#, Wang F#, Zhang Y#, Chen J, Liang L, Li Y, Zhang M, Yang X, Pang H, Li Y, Huang X, Qin D, Pei D, Sun H*, Zheng H*. Hemi-methylated CpG sites connect Dnmt1-knockdown-induced and Tet1-induced DNA demethylation during somatic cell reprogramming. Cell Discovery. 2019 Feb 12;5:11.
[26] Lin L#, Liang L#, Yang X#, Sun H, Li Y, Pei D, Zheng H*. The homeobox transcription factor MSX2 partially mediates the effects of bone morphogenetic protein 4 (BMP4) on somatic cell reprogramming. The Journal of Biological Chemistry. 2018 Sep 21;293(38):14905-14915.
[25] He S#, Sun H#, Lin L, Zhang Y, Chen J, Liang L, Li Y, Zhang M, Yang X, Wang X, Wang F, Zhu F, Chen J, Pei D, Zheng H*. Passive DNA demethylation preferentially up-regulates pluripotency-related genes and facilitates the generation of induced pluripotent stem cells. The Journal of Biological Chemistry. 2017 Nov 10;292(45):18542-18555.
[24] He S#, Chen J#, Zhang Y#, Zhang M, Yang X, Li Y, Sun H, Lin L, Fan K, Liang L, Feng C, Wang F, Zhang X, Guo Y, Pei D*, Zheng H*. Sequential EMT-MET induces neuronal conversion through Sox2. Cell Discovery. 2017 May 30;3:17017.
[23] Liang L#, Sun H, Li L, Zheng H*. Transitions between mesenchymal and epithelial states and the concomitant gene expression changes. Science Foundation in China. 2016,24(1):50-62.
[22] Li L#, He S, Zheng H*. The Abilities of ShDNMT1 to Promote Reprogramming are Enhanced by Vitamin C-recused Proliferation. China Biotechnology. 2016, 36(6): 1-8.
[21] Sun H#, Liang L, Li Y, Feng C, Li L, Zhang Y, He S, Pei D, Guo Y*, Zheng H*. Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Scientific Reports. 2016 Aug 2;6:30903.
[20] Liang L#, Sun H#, Zhang W, Zhang M, Yang X, Kuang R, Zheng H*. Meta-Analysis of EMT Datasets Reveals Different Types of EMT. PLoS One. 2016 Jun 3;11(6):e0156839.
[19] Huang Z#, Liang L#, Li L#, Xu M, Li X, Sun H, He S, Lin L, Zhang Y, Song Y, Yang M, Luo Y, Loh HH, Law PY, Zheng D*, Zheng H*. Opioid doses required for pain management in lung cancer patients with different cholesterol levels: negative correlation between opioid doses and cholesterol levels. Lipids in Health and Disease. 2016 Mar 8;15:47.
[18] Chen J#, Li W, Li Y, He S, Li L, Liang L, Song Y, Qin D*, Zheng H*. MicroRNA-128-3p impaired water maze learning by suppressing Doublecortin expression in both wild type and Aβ-42 infused mice. Neuroscience Letters. 2016 Jul 28;626:79-85.
[17] He S#, Guo Y, Zhang Y, Li Y, Feng C, Li X, Lin L, Guo L, Wang H, Liu C, Zheng Y, Luo C, Liu Q, Wang F, Sun H, Liang L, Li L, Su H, Chen J, Pei D*, Zheng H*. Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regeneration. 2015 Dec 30;4:12.
[16] Zheng H#, Hutchins AP, Pan G, Li Y, Pei D*, Pei G*. Where cell fate conversions meet Chinese philosophy. Cell Research. 2014 Oct;24(10):1162-3.
[15] Li X#, Pei D, Zheng H*. Transitions between epithelial and mesenchymal states during cell fate conversions. Protein Cell. 2014;5(8):580-91.
[14] Li W#, He S#, Zhou Y, Li Y, Hao J, Zhou X, Wang F, Zhang Y, Huang Z, Li Z, Loh HH, Law PY, Zheng H*. Neurod1 modulates opioid antinociceptive tolerance via two distinct mechanisms. Biological Psychiatry. 2014 Nov 15;76(10):775-84.
[13] Zheng H*#, Zhang Y, Li W, Loh HH, Law PY. NeuroD modulates opioid agonist-selective regulation of adult neurogenesis and contextual memory extinction. Neuropsychopharmacology. 2013 Apr;38(5):770-7.
[12] Zheng H*#, Loh HH, Law PY. Posttranslation modification of G protein-coupled receptor in relationship to biased agonism. Methods in Enzymology. 2013;522:391-408.
[11] Liu X#, Sun H, Qi J, Wang L, He S, Liu J, Feng C, Chen C, Li W, Guo Y, Qin D, Pan G, Chen J, Pei D*, Zheng H*. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nature Cell Biology. 2013 Jul;15(7):829-38.
[10] Zheng H*#, Zou H, Liu X, Chu J, Zhou Y, Loh HH, Law PY. Cholesterol level influences opioid signaling in cell models and analgesia in mice and humans. Journal of Lipid Research. 2012 Jun;53(6):1153-62.
[9] Zheng H*#, Pearsall EA, Hurst DP, Zhang Y, Chu J, Zhou Y, Reggio PH, Loh HH, Law PY. Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling. BMC Cell Biology. 2012 Mar 19;13:6.
[8] Zheng H*#, Law PY, Loh HH. Non-Coding RNAs Regulating Morphine Function: With Emphasis on the In vivo and In vitro Functions of miR-190. Frontiers in Genetics. 2012 Jun 15;3:113.
[7] Zheng H*#, Chu J, Zhang Y, Loh HH, Law PY. Modulating micro-opioid receptor phosphorylation switches agonist-dependent signaling as reflected in PKCepsilon activation and dendritic spine stability. The Journal of Biological Chemistry. 2011 Apr 8;286(14):12724-33.
[6] Zheng H*#, Zeng Y, Zhang X, Chu J, Loh HH, Law PY. mu-Opioid receptor agonists differentially regulate the expression of miR-190 and NeuroD. Molecular Pharmacology. 2010 Jan;77(1):102-9.
[5] Zheng H*#, Zeng Y, Chu J, Kam AY, Loh HH, Law PY. Modulations of NeuroD activity contribute to the differential effects of morphine and fentanyl on dendritic spine stability. Journal of Neuroscience. 2010 Jun 16;30(24):8102-10.
[4] Zheng H*#, Loh HH, Law PY. Agonist-selective signaling of G protein-coupled receptor: mechanisms and implications. IUBMB Life. 2010 Feb;62(2):112-9.
[3] Zheng H*#, Chu J, Zeng Y, Loh HH, Law PY. Yin Yang 1 phosphorylation contributes to the differential effects of mu-opioid receptor agonists on microRNA-190 expression. The Journal of Biological Chemistry. 2010 Jul 16;285(29):21994-2002.
[2] Zheng H*#, Loh HH, Law PY. Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation. Molecular Pharmacology. 2008 Jan;73(1):178-90.
[1] Zheng H*#, Chu J, Qiu Y, Loh HH, Law PY. Agonist-selective signaling is determined by the receptor location within the membrane domains. Proceedings of the National Academy of Sciences of the United States of America. 2008 Jul 8;105(27):9421-6.