1. Wang, Y., Zhang, Y., Lou, H., Wang, C., Ni, M., Yu, D., Zhang, L., & Kang, L. (2022). Hexamerin-2 Protein of Locust as a Novel Allergen in Occupational Allergy. Journal of Asthma and Allergy, 15, 145–155. doi.org/10.2147/JAA.S348825
2. Guo, X., Yu, Q., Chen, D., Wei, J., Yang, P., Yu, J., Wang, X., & Kang, L. (2020). 4-Vinylanisole is an aggregation pheromone in locusts. Nature, 584(7822), 584–588. doi.org/10.1038/s41586-020-2610-4
3. Wang, Y., Tong, X., Yuan, S., Yang, P., Li, L., Zhao, Y., & Kang, L. (2022). Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen Metarhizium anisopliae. Proc. Nat. Acad. Sci. (USA), 119(6), e2120835119. doi.org/10.1073/pnas.2120835119
4. Wang, H., Jiang, F., Liu, X., Liu, Q., Fu, Y., Li, R., Hou, L., Zhang, J., He, J., & Kang, L. (2022). Piwi/piRNAs control food intake by promoting neuropeptide F expression in locusts. EMBO Reports, 23(3), e50851. doi.org/10.15252/embr.202050851
5. He, J., Zhu, Y.N., Wang, B., Yang, P., Guo, W., Liang, B., Jiang, F., Wang, H., Wei, Y., and Kang, L. (2022). piRNA-guided intron removal from pre-mRNAs regulates density-dependent reproductive strategy. Cell Report, 39, 110593.
6. Du, B., Ding, D., Ma, C., Guo, W., & Kang, L. (2022). Locust density shapes energy metabolism and oxidative stress resulting in divergence of flight traits. Proc. Nat. Acad. Sci. (USA), 119(1), e2115753118. doi.org/10.1073/pnas.2115753118
7. Wei, J., Shao, W., Cao, M., Ge, J., Yang, P., Chen, L., Wang, X., & Kang, L. (2019). Phenylacetonitrile in locusts facilitates an antipredator defense by acting as an olfactory aposematic signal and cyanide precursor. Science Advances, 5(1), eaav5495. doi.org/10.1126/sciadv.aav5495
8. Yang, M., Wang, Y., Liu, Q., Liu, Z., Jiang, F., Wang, H., Guo, X., Zhang, J., & Kang, L. (2019). A β-carotene-binding protein carrying a red pigment regulates body-color transition between green and black in locusts. eLife, 8, e41362. doi.org/10.7554/eLife.41362
9. Guo, X., Ma, Z., Du, B., Li, T., Li, W., Xu, L., He, J., & Kang, L. (2018). Dop1 enhances conspecific olfactory attraction by inhibiting miR-9a maturation in locusts. Nature Comm., 9(1), 1193. doi.org/10.1038/s41467-018-03437-z.
10. Ding, D., Liu, G., Hou, L., Gui, W., Chen, B., & Kang, L. (2018). Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nature Comm., 9(1), 4991. doi.org/10.1038/s41467-018-07529-8
11. Chen, B., Zhang, B., Xu, L., Li, Q., Jiang, F., Yang, P., Xu, Y., & Kang, L. (2017). Transposable Element-Mediated Balancing Selection at Hsp90 Underlies Embryo Developmental Variation. Molecular Biology and Evolution, 34(5), 1127–1139. doi.org/10.1093/molbev/msx062
12. He, J., Chen, Q., Wei, Y., Jiang, F., Yang, M., Hao, S., Guo, X., Chen, D., & Kang, L. (2016). MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts. Proc. Nat. Acad. Sci. (USA), 113(3), 584–589. doi.org/10.1073/pnas.1521098113
13. Yang, M., Wang, Y., Jiang, F., Song, T., Wang, H., Liu, Q., Zhang, J., Zhang, J., & Kang, L. (2016). miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genetics, 12(8), e1006257. doi.org/10.1371/journal.pgen.1006257
14. Wang, X., & Kang, L. (2014). Molecular mechanisms of phase change in locusts. Annual Review of Entomology, 59, 225–244. doi.org/10.1146/annurev-ento-011613-162019
15. Wang, X., Fang, X., Yang, P., Jiang, X., Jiang, F., Zhao, D., Li, B., Cui, F., Wei, J., Ma, C., Wang, Y., He, J., Luo, Y., Wang, Z., Guo, X., Guo, W., Wang, X., Zhang, Y., Yang, M., Hao, S., … Kang, L. (2014). The locust genome provides insight into swarm formation and long-distance flight. Nature Comm., 5, 2957. doi.org/10.1038/ncomms3957
16. Yang, M., Wei, Y., Jiang, F., Wang, Y., Guo, X., He, J., & Kang, L. (2014). MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genetics, 10(2), e1004206. doi.org/10.1371/journal.pgen.1004206
17. Wang, Y., Yang, P., Cui, F., & Kang, L. (2013). Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathogens, 9(1), e1003102. https://doi.org/10.1371/journal.ppat.1003102
18. Cease, A. J., Elser, J. J., Ford, C. F., Hao, S., Kang, L., & Harrison, J. F. (2012). Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 335(6067), 467–469. doi.org/10.1126/science.1214433
19. Wu, R., Wu, Z., Wang, X., Yang, P., Yu, D., Zhao, C., Xu, G., & Kang, L. (2012). Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts. Proc. Nat. Acad. Sci. (USA), 109(9), 3259–3263. doi.org/10.1073/pnas.1119155109
20. Ma, Z., Guo, W., Guo, X., Wang, X., & Kang, L. (2011). Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc. Nat. Acad. Sci. (USA), 108(10), 3882–3887. doi.org/10.1073/pnas.1015098108
21. Guo, W., Wang, X., Ma, Z., Xue, L., Han, J., Yu, D., & Kang, L. (2011). CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genetics, 7(2), e1001291. doi.org/10.1371/journal.pgen.1001291
22. Wei, J., Wang, L., Zhao, J., Li, C., Ge, F., & Kang, L. (2011). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions. New Phytologist, 189(2), 557–567. doi.org/10.1111/j.1469-8137.2010.03491.x
23. Zhang, Y., Wang, X., & Kang, L. (2011). A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics, 27(6), 771–776. doi.org/10.1093/bioinformatics/btr016
24. Wei, Y., Chen, S., Yang, P., Ma, Z., & Kang, L. (2009). Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology, 10(1), R6. doi.org/10.1186/gb-2009-10-1-r6
25. Kang, L., Chen, X., Zhou, Y., Liu, B., Zheng, W., Li, R., Wang, J., & Yu, J. (2004). The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proc. Nat. Acad. Sci. (USA), 101(51), 17611–17615. doi.org/10.1073/pnas.0407753101